Could Euler Have Conjectured the Prime Number Theorem?
نویسندگان
چکیده
منابع مشابه
The Prime Number Theorem
The Prime Number Theorem asserts that the number of primes less than or equal to x is approximately equal to x log x for large values of x (here and for the rest of these notes, log denotes the natural logarithm). This quantitative statement about the distribution of primes which was conjectured by several mathematicians (including Gauss) early in the nineteenth century, and was finally proved ...
متن کاملDirichlet Prime Number Theorem
In number theory, the prime number theory describes the asymptotic distribution of prime numbers. We all know that there are infinitely many primes,but how are they distributed? Dirichlet’s theorem states that for any two positive coprime integers a and d, there are infinitely many primes which are congruent to a modulo d. A stronger form of Dirichlet’s theorem states that the sum of the recipr...
متن کاملPrime Number Theorem Lecture Notes
The Prime Number Theorem asserts that the number of primes less than or equal to x is approximately equal to x log x for large values of x (here and for the rest of these notes, log denotes the natural logarithm). This quantitative statement about the distribution of primes which was conjectured by several mathematicians (including Gauss) early in the nineteenth century, and was finally proved ...
متن کاملNote on the Prime Number Theorem
Proof. First of all, we prove that if pn is the nth prime number then we have that pn ≤ 2 n−1 . Since there must be some pn+1 dividing the number p1p2 · · · pn− 1 and not exceeding it, it follows from the induction step that pn+1 ≤ 2 0 2 1 · · · 22n−1 = 220+21+···+2n−1 ≤ 22n . If x ≥ 2 is some real number, then we select the largest natural number n satisfying 22n−1 ≤ x, so that we have that 2 ...
متن کاملSimple Proof of the Prime Number Theorem
A form of this was conjectured by Gauss about 1800, [Chebyshev 1848/52] and [Chebyshev 1850/52] made notable progress with essentially elementary methods. The landmark paper Riemann 1859] made clear the intimate connection between prime numbers and the behavior of ζ(s) as a function of a complex variable. The theorem was proven independently by [Hadamard 1896] and [de la Vallée Poussin 1896] by...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics Magazine
سال: 2017
ISSN: 0025-570X,1930-0980
DOI: 10.4169/math.mag.90.5.355